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Leung and Griffiths have proposed a fundamental thermodynamic equation for 
a binary mixture near the critical line and have successfully applied it to the 
mixture of He 3 and He 4 in which the critical line is a nearly linear function of 
composition. We have used a Leung-Griffiths type equation of state to describe 
the thermodynamic properties of the mixture of carbon dioxide and ethane. The 
critical line of this mixture is, unlike that of He 3 and He 4, a nonlinear function 
of composition, and the azeotropic line extends to the critical line. Comparison 
of the predictions of the equation to experimental data shows a good agreement 
for the mixture of CO 2 and C2H 6. 

KEY WORDS: carbon dioxide; critical point; equation of state; ethane; 
mixtures; thermodynamic properties. 

1. I N T R O D U C T I O N  

An equation of state is essential for the prediction of many  thermodynamic 
properties of a fluid system, be it a pure fluid or a mixture. Near  a critical 
point where a "classical" equation of state of the van der Waals type fails 
to describe correctly the singular behavior of a system, there is a need for a 
nonclassical equation of state which describes the thermodynamic proper- 
ties more accurately. In the case of pure fluids, great success has been 
achieved by the use of nonclassical critical indices and a scaled equation of 

IThermophyics Division, National Bureau of Standards, Washington, D.C,, 20234, U.S.A. 
2Automated Production Technology Division, National Bureau of Standards, Washington, 
D.C. 20234, U.S.A. 

337 
0195-928x/83 / 1200-0337503.00/0 �9 1983 Plenum Pu blishing Corporation 



338 Chang and Doiron 

state for describing a system near the gas-liquid critical point [1]. In the 
case of fluid mixtures near a gas-liquid critical line, Leung and Griffiths 
postulate that the mixture properties can be obtained from an interpolation 
between the critical properties of the pure components when a suitable set 
of variables is used [2]. They propose that the variables should be "field" 
variables instead of "density" variables. "Field" variables are those which 
have the same value for coexisting phases, such as temperature and 
chemical potentials, whereas "density" variables are those which have 
different values for coexisting phases, such as density and composition. 
They applied the idea to the mixtures of He 3 and He 4 and succeeded in 
describing the critical properties of the mixtures of all compositions along 
the entire critical line. 

The mixtures of He 3 and He 4 are fundamentally simple in the sense 
that the critical temperatures, pressures, and densities are nearly linear 
functions of composition. Although Leung and Griffiths demonstrated the 
success of their idea in a simple system, their basic idea should be 
applicable to mixtures with a more complex critical line than that of the 
mixtures of He 3 and He 4 as long as it is continuous between the gas-liquid 
critical points of the pure components. In fact, D'Arrigo et al. have 
successfully used an equation of the type of that of Leung and Griffiths to 
describe the mixtures of carbon dioxide and ethylene [3]. This system is 
significantly different from that of He 3 and He 4 in that the former exhibits 
azeotropy and the azeotropic line extends to the critical line. The point 
common to both lines is the critical azeotrope. Furthermore, the critical 
temperature is nearly a quadratic function of composition over the entire 
range with the minimum located very close to pure ethylene. Moldover et 
al. have also adapted the idea of Leung and Griffiths and formulated a 
thermodynamic potential for a number of binary mixtures [4, 5] including 
those of carbon dioxide and ethane [4]. Their formulation has been used, so 
far, successfully only in correlating the thermodynamic properties of the 
vapor-liquid equilibrium states near the critical locus of mixtures. 

In this report we attempt to provide an equation of the type of that of 
Leung and Griffiths for the mixtures of carbon dioxide (CO2) and ethane 
(C2H6). This system also exhibits critical azeotropy, and the minimum 
critical temperature is located at the composition of CO 2 equal to approxi- 
mately 55% mole fraction. The motivations behind this work are many. For 
instance, in our earlier light scattering experiment on the mixtures near a 
critical point [6] there was a need to estimate the scattering amplitudes, 
gravity effects, and some other properties of the mixtures. Furthermore, on 
a different ground, we would like to know to what extent the idea of Leung 
and Griffiths may be extended beyond the simple mixture of He 3 and He 4, 
as D'Arrigo et al. have attempted to do. For our mixture of carbon dioxide 
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and ethane, however, more and different experimental data are available 
than for that of carbon dioxide and ethylene. Finally, we want to show how 
one may systematically determine the free parameters in the Leung-  
Griffiths equation from experimental data in order to enable others to 
apply this type of equation of state to near-critical mixtures. 

2. T H E R M O D Y N A M I C  P O T E N T I A L  OF THE L E U N G - G R I F F I T H S  
TYPE 

The thermodynamic potential, ~o, is chosen to be the pressure, p, 
divided by RT, where R is the gas constant and T is the absolute 
temperature: 

o~ = p / R T  (1) 

The thermodynamic potential consists of a regular part, %, and a singular 
part, ~o~, which incorporates the critical anomalies: 

c0 = ~0 r + ~0, (2) 

Although the fundamental independent variables are T and the chemical 
potentials per mole, /~ and /~2 of the two components, more convenient 
variables are ~', T, and h, which are obtained through the following 
transformations: 

= C2exp( 1~2/RT)/O (3) 

~- = B c ( ~ )  - 1 / R T  (4) 

h = l n |  H( f ,T)  (5) 

where 

0 = C l e x p ( / t l / R T  ) + C2exp(la2/RT) (6) 

Here C 1 and C2 are two positive constants, B~(~') is the value of 1/RT 
along the critical line, and H(( ,  ~-) is the value of In O on the coexistence 
surface or its smooth extension into the one-phase region. 

These three variables are a very natural choice in the following sense. 
In pure component 1, tz2 tends to - ~ c  and f = 0, whereas in pure 
component 2,/~1 tends to - ov and ( = 1. Thus ~', which is bound between 0 
and 1, is the variable that interpolates between two pure components. The 
quantity �9 measures the distance from the critical line in the direction 
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parallel to the coexistence surface while h measures the distance away from 
the coexistence surface. 

One of the basic assumptions in the approach of Leung and Griffiths 
is that all functions other than c0 s can be expressed as a power series in ~, % 
and h. The exact number of terms cannot be determined a priori. Instead, 
comparison with experimental data dictates the number of terms that are 
needed. Therefore, for the mixtures of CO 2 and C2H 6 we have chosen the 
following interpolation equation with the designation that CO 2 is compo- 
nent l: 

where 

Bc(~" ) = a 0 + a l ~  + a2~'(1 - ~) + a3~2(1 - ~') 

H ( L ~ )  = b(~)  + g(~)~ + s ( ; ) ~  2 

~r(~,'r,h) = c (~ )  + d(~) 'r  + e(~)'r 2 + f ( ~ ) h  

b ( ; )  = b~; + b2~ "2 

c ( ~ )  = Co + c , ;  + c2;(1 - ; )  

d ( ~ )  = do + ,/,; 

e ( ; )  = eo+ e l ;  

f (~ )  = f0  + f l ~  +f2~(  1 - ~) 

g(~) = gl~ 

s ( ~ )  = So + s,~ + s2~(1 - ~) 

The singular part takes on the form 

ws(~,~-,h ) = q(~)~r(Zc, h) 

with 

where 

q(~) = 1 + q,~ + q2;(1 - ~) 

I ( ; )  = 1 + t ,~  

(7) 

(8) 

(9) 

(lO) 

(l l)  

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 
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Here 7r(~,h) is the Schofield "linear model" [7], which is given by the 
parametric form 

vr(~,h) = r2-~/5(0) (21) 

with 

h = a r ~ ( 1  - 02 ) (22) 

and 

= r(1 - [)202) /RTd (23) 

where Tcj is the critical temperature of the first component, and/j2 = (6 - 
3) / (6  - 1)(1 - 2fi). The critical indices a, fi, 6, and A =/?6 are in their 
customary notations. The function/5(0) is a polynomial quadratic in 0; it 
can be found in ref. [2]. The variable r is a measure of the distance of a 
state from criticality, and 0 measures the distance along a contour of 
constant r. The singular behavior at a critical point is then determined by 
the behavior as r ~ 0. 

Pressure can be obtained directly from the potential by simply multi- 
plying by RT,  whereas density and composition are derived quantities and 
are obtained in a less straightforward way. The number density P, in units 
of number of moles per unit volume, and the composition, x which is the 
mole fraction of CO2, are given by 

o = % = f l f )  + q( ; )g , r  pO (24) 

and 

x = ( 1 - ~ ) - ~ ( 1 - ~ ) Q / p  (25) 

where 

Q = ~o~ + B~wr - p(H;  + B~Hr (26) 

The subscripts f, r and h for ~0 and H denote partial derivatives with 
respect to that variable, while the other two are held constant. Bf is the 
derivative of B = I / R T ,  which is also equal to that of Bc(f ). 

Other useful derived quantities are the internal energy, u, in units of 
energy per unit volume and the heat capacity at constant volume, Cvx, in 
units of energy per mole per degree, and they are given by 

u = ~o~ - oH, (27) 
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oGx = (~u/ar)ox.  (28) 

3. D E T E R M I N A T I O N  OF PARAMETERS 

3.1. Pure Components 

The equations presented in Sec. 2 contain a total of 27 parameters to 
be determined in addition to the critical indices a, fl, 7, and A. Of these 27, 
16 are to be determined from the properties of the pure components. Since 

is equal to 0 for CO 2 (component 1) and ~ is equal to 1 for C2H 6 
(component 2) critical temperatures, densities, and pressures of the pure 
components provide the following six parameters: 

1 /  RT~, = B~(O) = a o (29) 

1 /RT~2  = Bc(l ) = a 0 + a 1 (30) 

&l =riO) = fo  (31) 

&2=f (1 )  = f o + f l  (32) 

Pcl = RTclc (O)  = RTcIco (33) 

p ~  = R L 2 c ( 1 )  = RL2(Co + c,) (34) 

Further analysis of equation-of-state data of the pure components could 
provide values for other parameters. However, in our case, we choose to 
make use of the results of an extensive analysis of data by Sengers and 
Levelt Sengers [1]. Their analysis has determined the values for a and k for 
each of the two pure components, and these two parameters are defined by 

(o  - Oc)/O = rekO (35)  

and 

[ i~(p, T )  - I~(Pc, T ) ] p c / P c  = rAaO( 1 -- 02) (36) 

Their parameters a and k for component l, here redesignated as a 1 and g'l, 
respectively, and those for component 2, 82 and g2, can be shown to be 
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related to our a, g,/1, and q~ in the following way: 

= P c l g l  (37) 

a=pc,a,/RT~,oc, (38) 

ii ~--. (Te2/Tc l )A 1/A -- 1 (39) 

and 

ql = (,Oc2g2/Pc, gl)A --1/6 __ l (40) 

where 

.4 = a2Pc2 T c l P c l /  all)cl  Tc2~c 2 (41) 

and the subscripts 1 and 2 refer to components 1 and 2, respectively, as 
before. 

The analysis of Sengers and Levelt Sengers [1] also provided us with 
the values for the critical indices a, fl, y, and A. Their values differ slightly 
from those of the universal Ising values. However, these "apparent" expo- 
nent values are adopted because, in simple fluids, the truly asymptotic 
scaled form of the equation of state with Ising exponents is valid only in a 
very small temperature range close to a critical point [8]. The use of the 
apparent values extends the temperature range in which the scaled equation 
of state is valid. 

Vapor pressure data of carbon dioxide [9-11] and ethane [10-12] can 
now be used, in conjunction with the 10 parameters already determined, to 
obtain do, d~, e 0, and e~ through the use of the vapor pressure equation: 

po(~) -- RT[c(~) + d(~) + e(~)r  2 + q(~)r2-~/5(1)] (42) 

where 

r = - f , 2 )  (43) 

Keep in mind that 0 is equal to + 1 or - 1 along the coexistence curve and 
Eq. (42) is to be evaluated for ~" = 0 for carbon dioxide and f = 1 for ethane 
only. An excellent agreement between the data and Eq. (42) can be 
obtained, as shown in Fig. 1, by properly adjusting the values of the 
parameters. 



344 Chang and Doiron 

10 

9~ 
�9 kevelt  Sengers et al. [9] 
a Khazanova et al. [10] 

8 - �9 Fredenslund et al. [11] 

~ 6 

3 .--&: 

2 

270 280 ~ 

CO 2 

C2H6 

290 300 

Temperature,  K 

310 

Fig. 1. Comparison between vapor pressure data of CO 2 and C2H 6 and Eq. (42) evaluated for 
~" = 0 for CO 2 and f = 1 for C2H 6. The data are used to determine the values of do, d I, e o, 
and e l . 

N e x t ,  data  for the heat  capacities at constant  volume of C O  2 [13] and 
C2H 6 [14] along the critical isochore are used to determine s o and s v The 
equation for C v along the critical isochore for pure fluids is 

C v = { 2 [ e ( ~ ' ) -  ps(~')] + IT(7  - 1) /2c~b2]ag(RTc , )2r -"q(~) l (~)  2 } /P  RT2  

where 

r = I ( ~ ) ( T . I / T ) [ T I T . ( ~ ) -  1] 

(44) 

(45) 

Equat ion (44) is valid only for ~ = 0 or 1, which is the case of pure fluids. 
The general expression for a mixtures contains addit ional  terms with a 
prefactor  of ~(1 - ~:), which vanishes when ~" is either 0 or 1. The value of s o 
is obta ined by matching Eq. (44), evaluated at ~" = 0 and ( T -  T c ) / T  ~ = 
5.6 X 10 -4, to the experimental  data  of CO 2 [13] at the same reduced 
temperature.  Similarly, by matching Eq. (44), evaluated at ~ = 1 and 
( T  - T c ) / T  c = 3.2 • 10 -4 ,  to  the experimental  data of C 2 H  6 [14], we obtain 
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Fig. 2. Compar i son  between C~ data of CO 2 and C2H 6 and Eq. (44) evaluated for ~" = 0 for 
CO 2 and ~" = 1 for C2H 6. The data are used to determine the values of s o and s 1. 

s 1. The comparison between the data and Eq. (44) so adjusted is shown in 
Fig. 2. 

The last two parameters, C~ and C 2, which may be determined from 
pure component properties, require critical entropy data or their equivalent. 
Being unaware of such data in the literature we must defer the determina- 
tion of these two parameters. Fortunately, they are not needed in predicting 
many of the thermophysical properties of mixtures. 

3 . 2 .  M i x t u r e s  

The remaining nine parameters must be determined from mixture 
data. The most useful are the critical line data which consist of critical 
temperatures, Tc(x ), critical pressures, pc(x), and critical densities, Oc(x), as 
a function of composition, x which is the mole fraction of CO 2 in the 
mixture. Along the critical line we have T = 0 ,  h = 0, and r = 0, and every 
quantity becomes a function of ~ only: 

T~(x) = 1/RB~(~) (46) 

pc(x) = = (47) 

Oc(x) = f (~ )  (48) 
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Fig. 3. Comparison between Tc(x ) data and Eqs. (46) and (49). The data, in conjunction with 
those for Pc and p~, are used to determine the values of a 2, a 3, b l, b2, c2, f2, and gl. 

and 

(49) 

where 

Qct = cf + Bfd(~) (50) 

and 

Qc2 = b~ + B~g(~) (51) 

Through the use of Eqs. (46)-(51), and the experimental data of the critical 
line [10, 15], one determines simultaneously the seven parameters, a2, a3, 
b2, C2, f2, and g=. Although To(x), pc(x), and pc(x) are affected by all of 
these seven parameters, their sensitivities to each of the parameters are 
different. For instance, the critical temperatures are sensitive to the values 
of a 2 and a3, the critical pressures are sensitive to c 2, and the critical 
densities are sensitive to f2. The conversion from ~" to x along the critical 
line involves all seven parameters, but the values of b], b2, and gl affect 
mainly the small-x region. Therefore, by the method of successive iteration, 
one can arrive at a set of values for the seven parameters which yield a 
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Fig. 4. Comparison between pc(x) data and Eqs. (47) and (49). 
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Fig. 6. Comparison between C~x data of x = 0.282, 0.564, and 0.719 and the predictions. The 
predictions for C~x are obtained from Eq. (2.27) of ref [2]. The data of x = 0.719 are used to 
determine the values of q2 and s 2. 

good agreement between the experimental data and Eqs. (46)-(48), as 
shown in Figs. 3, 4, and 5 for Tc(x), pc(x), and Oc(x), respectively. It should 
be mentioned that when data are fitted to the equations, the best fit is 
determined by visual inspection of the fit on a graphic display. 

The remaining two parameters, q2 and s 2, mus t  be determined from 
some mixture data, and we have found that the heat capacities are most 
useful for this purpose. The equation for Cvx is rather complicated for 
mixtures, and we refer readers to ref. [2] for details. By adjusting q2 and s 2 
we can obtain a good agreement between the equation and the experimen- 
tal data [16] for x = 0.719 as a function of ( T -  Tc)/T~, and the compari- 
son is shown in Fig. 6. The experimental data are represented by a dotted 
line whereas the predictions are represented by a solid line. 

4. DISCUSSION 

We have determined the values of 27 parameters from data of the pure 
components and the mixtures. The values of the critical exponents in the 
equations were taken from the literature and are listed in Table I, along 
with the values of the parameters. With these parameters one can use the 
equation of state to predict quantitatively many thermophysical properties 
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T a b l e  I.  C o n s t a n t s  in  t h e  E q u a t i o n  o f  S t a t e  f o r  M i x t u r e s  of  C O  2 a n d  C 2 H  6 

C o n s t a n t  V a l u e  C o n s t a n t  V a l u e  

349 

a 0 3 .9547  X 10 - 4  m o l  �9 J -  J g t  4 0 0 0  J �9 m o l -  1 

a 1 - 1.5581 • 10 - 6  m o l .  j - I  ii - 0 . 0 1 8 3  

a 2 1.12 • 10 4 m o l .  j - I  ql --  0 .358 

a 3 -- 8.5 X 10 5 m o l  �9 J -  1 q2 - 0.8 

b I - 0.3 s o - 2 .977 • 107 j 2 .  t o o l - 2  

b 2 - 0.15 s 1 - 6 .428 • 1 0 6 J  2 .  tool  - 2  

c o 2 .9167  • 103 m o l  - m - 3  s 2 - 3.6 • 107 j 2 .  m o l - 2  

C 1 - -  9.976  • 102 m o l  �9 m - 3  ~ 5 .844 

c 2 - 550 m o l .  m - 3  g 15265 m o l -  m - 3  

do 4.3 • 1 0 7 j .  m 3 a 0.1 

d 1 - 1.7 • 107 J �9 m - 3  fl  0 .355 

e 0 - 4 . 4 •  10 l I J 2 - m o l - l . m  - 3  7 1.19 

e I 1.55 • 1011 j 2 .  m o l  I .  m - 3  d 4 .352 

f0  10630 m o l  �9 m - 3  A 1.545 

f j  - 3 7 6 3 m o l . m  3 R 8 . 3 1 4 4 1 J . m o l  i . K - I  

f2  -- 5 2 0 0  t o o l .  m 3 T d 304 .127  K 

of the mixtures near the critical line. For instance, the composition of the 
mixture with the minimum T c can be obtained by solving 

B~ (~'m) = 0 (52) 

for fm and then evaluating Eq. (25) for h -- 0 and ~" = 0. The composition 
thus obtained is x = 0.570, which is close to the reported experimental 
value [16] of 0.564. The composition of the critical azeotrope is obtained by 
solving 

- = 0 (53) 

for (a and then also evaluating Eq. (25) for h -- 0 and ~- = 0. The composi- 
tion thus obtained is x = 0.709, which is also very close to the reported 
experimental value [16] of 0.719. 

Experimental data for Cvx are also available [16] for x = 0.282 and 
x -- 0.564, and they are represented in Fig. 6 by a dash-dotted line and a 
long-short-short-dashed line, respectively. The predictions of the equation 
are represented in Fig. 6 by a long-dashed line and a short-dashed line, 
respectively, for x = 0.282 and x = 0.564. The lack of smoothness of the 
lines representing experimental data reflects the scatter of data points. 
From Fig. 6 one sees that the agreement between the data and the 
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predictions is better for x = 0.564 than for x = 0.282, but the agreement for 
both cases improves at T gets closer to T~. 

Experimental data are also available for vapor pressure and density 
along the coexistence curve. The corresponding equations are given, respec- 
tively, by 

and 

Po = R T [ c ( f )  + d ( f ) r  + e ( f )T  2 + q(~)~r(~,O)] (54) 

Oo = f ( ~ )  + q ( f )g ,  r~O (55) 

where 0 -- + 1 and - 1, respectively, for liquid and vapor phases, and 

r = I (~)RTcl[Bc(~ ) - 1 / R T ] / ( 1  - if2) (56) 

The experimental data are given in terms of x, which should be evaluated 
from Eq. (25) accordingly for h = 0 and the appropriate value of 0. The 
comparisons between the data and the predictions are shown in Figs. 7 
and 8. 

In this comparison, we must mention two aspects or conditions of the 
Schofield model. First, the model begins to lose its accuracy when the 
distance parameter r ~--0.1 or greater. When translated into temperature 

Khazanova et al. [10] " 
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Fig. 7. Comparison between Po data and Eq. (54)�9 The dotted line is the critical line. 
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Fig. 8. Comparison between Po data and Eq. (55). The dotted line is the critical line. 

range along the coexistence curve, it is equivalent to T C - T--~ 10 K and 
greater. Second, the model assumes that the coexisting densities are sym- 
metric with respect to the critical density for the pure components. Whereas 
the first condition restricts the range of temperature in which the equation 
is applicable, the second is believed to be the major cause of discrepancy 
between the data and the predictions because CO 2 and C2H 6 do not have a 
symmetric coexistence curve. Examination of Figs. 7 and 8 reveals that the 
agreement between the data and the predictions is indeed better for the 
data at 20~ than at other temperatures, but the agreement at 10~ is still 
very good with only about 10% discrepancy. 

One of the major differences between the equation proposed by 
Moldover et al. [4, 5] and ours is that a skewness of the coexistence curves 
is incorporated in their equation. But the introduction of the skewness is 
expected to make their equation less suitable than ours to describe the 
one-phase region. 

5. CONCLUSIONS 

A total of 27 parameters in the equations have been determined. Of 
these 27, sixteen are determined from experimental data of pure compo- 
nents, and nine are from those of mixtures. The procedure to determine the 
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values of the pa ramete r s  f rom pure  c o m p o n e n t  da t a  is s t ra ight forward ,  

whereas  the p rocedure  to de te rmine  those pe r ta in ing  to the mixture  proper -  
ties is not. In  the la t ter  case s imul taneous  de t e rmina t ion  of several  pa r a me -  
ters is required,  and  some of the pa rame te r s  are  s t rongly corre la ted,  which 
can  lead  to a ra ther  ambiguous  de te rmina t ion  of their  values,  especial ly 
when the prec is ion of the exper imenta l  d a t a  is poor .  A l though  the avai lab le  
da ta  for the mixture  are in general  l imited and  are  not  of high accuracy ,  
they are sufficient for the purpose  of p rov id ing  a useful  equa t ion  of state of 
the mixture.  F o r  instance,  the equa t ion  of state has  been  used to ca lcula te  
densi ty  and  concen t ra t ion  gradients  [17] i nduced  by  gravi ty in the mixtures  
near  a gas- l iquid cri t ical  point .  
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